Isolation and characterization of the integral glycosaminoglycan constituents of human amyloid A and monoclonal light-chain amyloid fibrils.
نویسندگان
چکیده
Amyloid fibrils were isolated by extraction in water from the livers and spleens of four patients who had died of monoclonal, light-chain (AL)-type, systemic amyloidosis and one with reactive systemic, amyloid A protein (AA)-type amyloidosis. Each fibril preparation contained 1-2% by weight of glycosaminoglycan (GAG) which was tightly associated with the fibrils and not just co-isolated from the tissues with them. After exhaustive digestion of the fibrils with papain and Pronase, the GAGs were specifically precipitated with cetylpyridinium chloride and were identified by cellulose acetate electrophoresis and selective susceptibility to specific glycosidases. All the preparations contained approximately equal amounts of heparan sulphate and dermatan sulphate. There was no evidence for the presence of chondroitin sulphate or other GAGs. Fine structural analysis by oligosaccharide mapping in gradient polyacrylamide gels, following partial digestion with specific glycosidases, showed very similar structures among the heparan sulphates and the dermatan sulphates, respectively. GAGs were also extracted by solubilizing amyloid fibrils in 4 M-guanidinium chloride followed by CsCl density-gradient ultracentrifugation. Although a minor proportion of the GAG material obtained in this way was apparently in the form of proteoglycan molecules, most of it was free GAG chains. The presence in amyloid fibrils of different types, in different organs and from different patients of particular GAG classes with similar structures supports the view that these molecules may be of pathogenic significance.
منابع مشابه
Anti-amyloidogenic and disaggregating effects of Salvia officinalis in vitro: a strategy to reduce the insulin amyloid fibrils due to repeated subcutaneous injections in diabetic patients
Background: Recently, there has been growing efforts to elucidate the molecular mechanism of amyloid formation and investigating effective compounds for inhibiting of amyloid structures. Investigation of the fibrillation process through its induction and inhibition using specific compounds such as aromatic derivatives provide useful information for stabilizing the protein structure. In the pres...
متن کاملAL Amyloid Imaging and Therapy with a Monoclonal Antibody to a Cryptic Epitope on Amyloid Fibrils
The monoclonal antibody 2A4 binds an epitope derived from a cleavage site of serum amyloid protein A (sAA) containing a -Glu-Asp- amino acid pairing. In addition to its reactivity with sAA amyloid deposits, the antibody was also found to bind amyloid fibrils composed of immunoglobulin light chains. The antibody binds to synthetic fibrils and human light chain (AL) amyloid extracts with high aff...
متن کاملInhibition of Amyloid Fibrils Formation from Hen Egg White Lysozyme by Satureia Hortensis Extract and its Effect on Learning and Spatial Memory of Rats
Background & Aims: Alzheimer's disease is a neurodegenerative disorder characterized by the abnormal aggregation of amyloid-β plaques in the brain. Although several studies have been done for finding effective medicines in the treatment of this disease, a drug that inhibits amyloid β aggregation and ameliorates the disorder has not been approved so far. One important therapeutic approach is use...
متن کاملHereditary systemic immunoglobulin light-chain amyloidosis.
Several members of a family died from renal failure as a result of systemic amyloidosis. Extensive studies to detect previously documented gene mutations associated with amyloidosis failed to identify a causative factor. In search of the genetic basis for this syndrome, amyloid fibrils were isolated from renal tissue of a member of the kin who died while on renal dialysis. Amino acid sequencing...
متن کاملLight Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes
Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 275 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1991